There are many diseases caused by mutations in mitochondrial DNA (mtDNA). Because the mitochondria produce energy in cells, symptoms of mitochondrial diseases often involve degeneration or functional failure of tissue. For example, mtDNA mutations have been identified in some forms of diabetes, deafness, and certain inherited heart diseases. In addition, mutations in mtDNA are able to accumulate throughout an individual's lifetime. This is different from mutations in nuclear DNA, which has sophisticated repair mechanisms to limit the accumulation of mutations. Mitochondrial DNA mutations can also concentrate in the mitochondria of specific tissues. A variety of deadly diseases are attributable to a large number of accumulated mutations in mitochondria. There is even a theory, the Mitochondrial Theory of Aging, that suggests that accumulation of mutations in mitochondria contributes to, or drives, the aging process. These defects are associated with Parkinson's and Alzheimer's disease, although it is not known whether the defects actually cause or are a direct result of the diseases. However, evidence suggests that the mutations contribute to the progression of both diseases.
In addition to the critical cellular energy-related functions, mitochondrial genes are useful to evolutionary biologists because of their maternal inheritance and high rate of mutation. By studying patterns of mutations, scientists are able to reconstruct patterns of migration and evolution within and between species. For example, mtDNA analysis has been used to trace the migration of people from Asia across the Bering Strait to North and South America. It has also been used to identify an ancient maternal lineage from which modern man evolved.
skip to main |
skip to sidebar
Sunday, June 6, 2010
Blog Archive
-
▼
2010
(52)
-
▼
June
(52)
- How Do We Inherit Our Biological Characteristics
- How are GM foods labeled?
- How are GM foods regulated and what is the govern...
- What are some of the criticisms against GM foods?
- How prevalent are GM crops? What plants are invol...
- What are some of the advantages of GM foods?
- What are genetically-modified foods?
- Reading Chapters In The Genome
- DNA Is Like A Library Of Instructions
- Reading the Sequences
- Unzipping DNA
- The DNA Sequence
- Inheritance
- Tracing Similarities And Differences In Our DNA
- Where Is DNA Found?
- Understanding Gene Testing
- Ethical, Legal, and Social Concerns about DNA Data...
- What are some of the DNA technologies used in fore...
- How is DNA typing done?
- Is DNA effective in identifying persons?
- How does forensic identification work?
- Exceptions to Mendel's Laws
- How Does Inheritance Work?
- Mutations and the Next Generation
- Mechanisms of Genetic Variation and Heredity
- The Influence of DNA Structure and Binding Domains
- Controlling Transcription
- Gene Switching: Turning Genes On and Off
- How Many Genes Do Humans Have?
- Structural Genes, Junk DNA, and Regulatory Sequences
- From Genes to Proteins: Start to Finish
- Gene Prediction Using Computers
- The Core Gene Sequence: Introns and Exons
- Proteins
- Ribonucleic Acids
- Why Study Mitochondria?
- Why Is There a Separate Mitochondrial Genome?
- The Physical Structure of the Human Genome
- WHAT IS A GENOME?
- What is DNA?
- Research and Applications
- Replication
- Protein Synthesis
- Structure
- DNA
- Food Security
- Agriculture and Allied Areas
- Basic Research
- Historical Events in Biotechnology
- Industry Facts
- What is Biotechnology?
- Introduction to "Biotechnology"
-
▼
June
(52)
0 comments:
Post a Comment