Visit this site.

ads

Sunday, June 6, 2010

Mechanisms of Genetic Variation and Heredity

Does Everyone Have the Same Genes?

When you look at the human species, you see evidence of a process called genetic variation, that is, there are immediately recognizable differences in human traits, such as hair and eye color, skin pigment, and height. Then there are the not so obvious genetic variations, such as blood type. These expressed, or phenotypic, traits are attributable to genotypic variation in a person's DNA sequence. When two individuals display different phenotypes of the same trait, they are said to have two different alleles for the same gene. This means that the gene's sequence is slightly different in the two individuals, and the gene is said to be polymorphic, "poly" meaning many and "morph" meaning shape or form. Therefore, although people generally have the same genes, the genes do not have exactly the same DNA sequence. These polymorphic sites influence gene expression and also serve as markers for genomic research efforts.
 
 

Genetic Variation

The cell cycle is the process that a cell undergoes to replicate.
Most genetic variation occurs during the phases of the cell cycle when DNA is duplicated. Mutations in the new DNA strand can manifest as base substitutions, such as when a single base gets replaced with another; deletions, where one or more bases are left out; or insertions, where one or more bases are added. Mutations can either be synonymous, in which the variation still results in a codon for the same amino acid or non-synonymous, in which the variation results in a codon for a different amino acid. Mutations can also cause a frame shift, which occurs when the variation bumps the reference point for reading the genetic code down a base or two and results in loss of part, or sometimes all, of that gene product. DNA mutations can also be introduced by toxic chemicals and, particularly in skin cells, exposure to ultraviolet radiation.
 
The manner in which a cell replicates differs with the various classes of life forms, as well as with the end purpose of the cell replication. Cells that compose tissues in multicellular organisms typically replicate by organized duplication and spatial separation of their cellular genetic material, a process called mitosis. Meiosis is the mode of cell replication for the formation of sperm and egg cells in plants, animals, and many other multicellular life forms. Meiosis differs significantly from mitosis in that the cellular progeny have their complement of genetic material reduced to half that of the parent cell.
 
 
Mutations that occur in somatic cells—any cell in the body except gametes and their precursors—will not be passed on to the next generation. This does not mean, however, that somatic cell mutations, sometimes called acquired mutations, are benign. For example, as your skin cells prepare to divide and produce new skin cells, errors may be inadvertently introduced when the DNA is duplicated, resulting in a daughter cell that contains the error. Although most defective cells die quickly, some can persist and may even become cancerous if the mutation affects the ability to regulate cell growth.
 
 

0 comments:

Post a Comment