There are many examples of inheritance that appear to be exceptions to Mendel's laws. Usually, they turn out to represent complex interactions among various allelic conditions. For example, co-dominant alleles both contribute to a phenotype. Neither is dominant over the other. Control of the human blood group system provides a good example of co-dominant alleles. | ||
| ||
Pleiotropism, or pleotrophy, refers to the phenomenon in which a single gene is responsible for producing multiple, distinct, and apparently unrelated phenotypic traits, that is, an individual can exhibit many different phenotypic outcomes. This is because the gene product is active in many places in the body. An example is Marfan's syndrome, where there is a defect in the gene coding for a connective tissue protein. Individuals with Marfan's syndrome exhibit abnormalities in their eyes, skeletal system, and cardiovascular system. Some genes mask the expression of other genes just as a fully dominant allele masks the expression of its recessive counterpart. A gene that masks the phenotypic effect of another gene is called an epistatic gene; the gene it subordinates is the hypostatic gene. The gene for albinism in humans is an epistatic gene. It is not part of the interacting skin-color genes. Rather, its dominant allele is necessary for the development of any skin pigment, and its recessive homozygous state results in the albino condition, regardless of how many other pigment genes may be present. Because of the effects of an epistatic gene, some individuals who inherit the dominant, disease-causing gene show only partial symptoms of the disease. Some, in fact, may show no expression of the disease-causing gene, a condition referred to as nonpenetrance. The individual in whom such a nonpenetrant mutant gene exists will be phenotypically normal but still capable of passing the deleterious gene on to offspring, who may exhibit the full-blown disease. Then we have traits that are multigenic, that is, they result from the expression of several different genes. This is true for human eye color, in which at least three different genes are responsible for determining eye color. A brown/blue gene and a central brown gene are both found on chromosome 15, whereas a green/blue gene is found on chromosome 19. The interaction between these genes is not well understood. It is speculated that there may be other genes that control other factors, such as the amount of pigment deposited in the iris. This multigenic system explains why two blue-eyed individuals can have a brown-eyed child. Speaking of eye color, have you ever seen someone with one green eye and one brown eye? In this case, somatic mosaicism may be the culprit. This is probably easier to describe than explain. In multicellular organisms, every cell in the adult is ultimately derived from the single-cell fertilized egg. Therefore, every cell in the adult normally carries the same genetic information. However, what would happen if a mutation occurred in only one cell at the two-cell stage of development? Then the adult would be composed of two types of cells: cells with the mutation and cells without. If a mutation affecting melanin production occurred in one of the cells in the cell lineage of one eye but not the other, then the eyes would have different genetic potential for melanin synthesis. This could produce eyes of two different colors. Penetrance refers to the degree to which a particular allele is expressed in a population phenotype. If every individual carrying a dominant mutant gene demonstrates the mutant phenotype, the gene is said to show complete penetrance. | ||
skip to main |
skip to sidebar
Sunday, June 6, 2010
Exceptions to Mendel's Laws
Blog Archive
-
▼
2010
(52)
-
▼
June
(52)
- How Do We Inherit Our Biological Characteristics
- How are GM foods labeled?
- How are GM foods regulated and what is the govern...
- What are some of the criticisms against GM foods?
- How prevalent are GM crops? What plants are invol...
- What are some of the advantages of GM foods?
- What are genetically-modified foods?
- Reading Chapters In The Genome
- DNA Is Like A Library Of Instructions
- Reading the Sequences
- Unzipping DNA
- The DNA Sequence
- Inheritance
- Tracing Similarities And Differences In Our DNA
- Where Is DNA Found?
- Understanding Gene Testing
- Ethical, Legal, and Social Concerns about DNA Data...
- What are some of the DNA technologies used in fore...
- How is DNA typing done?
- Is DNA effective in identifying persons?
- How does forensic identification work?
- Exceptions to Mendel's Laws
- How Does Inheritance Work?
- Mutations and the Next Generation
- Mechanisms of Genetic Variation and Heredity
- The Influence of DNA Structure and Binding Domains
- Controlling Transcription
- Gene Switching: Turning Genes On and Off
- How Many Genes Do Humans Have?
- Structural Genes, Junk DNA, and Regulatory Sequences
- From Genes to Proteins: Start to Finish
- Gene Prediction Using Computers
- The Core Gene Sequence: Introns and Exons
- Proteins
- Ribonucleic Acids
- Why Study Mitochondria?
- Why Is There a Separate Mitochondrial Genome?
- The Physical Structure of the Human Genome
- WHAT IS A GENOME?
- What is DNA?
- Research and Applications
- Replication
- Protein Synthesis
- Structure
- DNA
- Food Security
- Agriculture and Allied Areas
- Basic Research
- Historical Events in Biotechnology
- Industry Facts
- What is Biotechnology?
- Introduction to "Biotechnology"
-
▼
June
(52)
0 comments:
Post a Comment