skip to main |
skip to sidebar
Monday, June 7, 2010
What are genetically-modified foods?
The term GM foods or GMOs (genetically-modified organisms) is most commonly used to refer to crop plants created for human or animal consumption using the latest molecular biology techniques. These plants have been modified in the laboratory to enhance desired traits such as increased resistance to herbicides or improved nutritional content. The enhancement of desired traits has traditionally been undertaken through breeding, but conventional plant breeding methods can be very time consuming and are often not very accurate. Genetic engineering, on the other hand, can create plants with the exact desired trait very rapidly and with great accuracy. For example, plant geneticists can isolate a gene responsible for drought tolerance and insert that gene into a different plant. The new genetically-modified plant will gain drought tolerance as well. Not only can genes be transferred from one plant to another, but genes from non-plant organisms also can be used. The best known example of this is the use of B.t. genes in corn and other crops. B.t., or Bacillus thuringiensis, is a naturally occurring bacterium that produces crystal proteins that are lethal to insect larvae. B.t. crystal protein genes have been transferred into corn, enabling the corn to produce its own pesticides against insects such as the European corn borer. For two informative overviews of some of the techniques involved in creating GM foods, visit Biotech Basics (sponsored by Monsanto)
Blog Archive
-
▼
2010
(52)
-
▼
June
(52)
- How Do We Inherit Our Biological Characteristics
- How are GM foods labeled?
- How are GM foods regulated and what is the govern...
- What are some of the criticisms against GM foods?
- How prevalent are GM crops? What plants are invol...
- What are some of the advantages of GM foods?
- What are genetically-modified foods?
- Reading Chapters In The Genome
- DNA Is Like A Library Of Instructions
- Reading the Sequences
- Unzipping DNA
- The DNA Sequence
- Inheritance
- Tracing Similarities And Differences In Our DNA
- Where Is DNA Found?
- Understanding Gene Testing
- Ethical, Legal, and Social Concerns about DNA Data...
- What are some of the DNA technologies used in fore...
- How is DNA typing done?
- Is DNA effective in identifying persons?
- How does forensic identification work?
- Exceptions to Mendel's Laws
- How Does Inheritance Work?
- Mutations and the Next Generation
- Mechanisms of Genetic Variation and Heredity
- The Influence of DNA Structure and Binding Domains
- Controlling Transcription
- Gene Switching: Turning Genes On and Off
- How Many Genes Do Humans Have?
- Structural Genes, Junk DNA, and Regulatory Sequences
- From Genes to Proteins: Start to Finish
- Gene Prediction Using Computers
- The Core Gene Sequence: Introns and Exons
- Proteins
- Ribonucleic Acids
- Why Study Mitochondria?
- Why Is There a Separate Mitochondrial Genome?
- The Physical Structure of the Human Genome
- WHAT IS A GENOME?
- What is DNA?
- Research and Applications
- Replication
- Protein Synthesis
- Structure
- DNA
- Food Security
- Agriculture and Allied Areas
- Basic Research
- Historical Events in Biotechnology
- Industry Facts
- What is Biotechnology?
- Introduction to "Biotechnology"
-
▼
June
(52)
0 comments:
Post a Comment