Visit this site.

ads

Monday, June 7, 2010

How Do We Inherit Our Biological Characteristics

Introduction

Lucia and David want to have a child. Lucia is concerned, however, because she has a family history of cystic fibrosis. Cystic fibrosis is a genetic disease that causes a constant thick mucous in the respiratory system. This condition sets up severe respiratory infections. Cystic fibrosis also causes trouble in digesting some foods because the pancreas fails to produce the proper enzymes. Lucia worries about passing the disease to her child, even though she herself does not have it. Lucia and David decide to consult a genetic counselor to understand the risk of having a child with cystic fibrosis.
*Lucia's Siblings:
Bryant is a 23-year-old graduate student in microbiology. He has cystic fibrosis, although he didn't know this until he as 8 years old. Before that, doctors simply treated him for infection after infection--usually bronchitis or pneumonia. He was terrified of catching a cold, which could land him in the hospital. Bryant also had abdominal pains a few hours after eating, and as a result, he was always severly underweight. Doctors noted a "sensitive stomach" in his chart, lectured his mother on providing proper nutrition, and attributed Bryant's pains to a nervous disposition.
A brother 2 years younger than Bryant named Will was very healthy; but when a sister Katie was born when Bryant was 8, a pattern appeared. Katie, like Bryant, battled very frequent respiratory infections. When as a baby she would scream after eating, doctors at first diagnosed colic and advised switching infant formulas. Nothing helped. When, at two years of age, Katie weighted only 20 pounds, her pediatrician began to put together the symptoms with those of her elder brother. Bryant and Katie were the only family members with the disorder.


Your assignment for the next three weeks will be to investigate this disease and prepare a "story book" about the disease. The genetics counseling community ascribes to a belief in non-directive counseling. That is, they feel that it is their duty to provide all of the information that is available and desired by a family so that they can make the decisions that are appropriate to them based on their own cultural, moral, religious, etc. beliefs. Your investigation should include medical information important for people with this disease so that they can live a healthy and prolonged life. This might include:
  • a pedigree for the family described
  • family members who appear to possibly have the disease
  • a prediction of the chances of their offspring having this disease
  • the ethical and social issues involved in this particular case for the child and the parents
Each image must have a caption. The presentation will be given using ClarisWorks® or Microsoft PowerPoint® presentation software. It should be written such that someone else could view the presentation and understand the key points without an accompanying verbal explanation.

How are GM foods labeled?

Labeling of GM foods and food products is also a contentious issue. On the whole, agribusiness industries believe that labeling should be voluntary and influenced by the demands of the free market. If consumers show preference for labeled foods over non-labeled foods, then industry will have the incentive to regulate itself or risk alienating the customer. Consumer interest groups, on the other hand, are demanding mandatory labeling. People have the right to know what they are eating, argue the interest groups, and historically industry has proven itself to be unreliable at self-compliance with existing safety regulations. The FDA's current position on food labeling is governed by the Food, Drug and Cosmetic Act which is only concerned with food additives, not whole foods or food products that are considered "GRAS" - generally recognized as safe. The FDA contends that GM foods are substantially equivalent to non-GM foods, and therefore not subject to more stringent labeling. If all GM foods and food products are to be labeled, Congress must enact sweeping changes in the existing food labeling policy.
There are many questions that must be answered if labeling of GM foods becomes mandatory. First, are consumers willing to absorb the cost of such an initiative? If the food production industry is required to label GM foods, factories will need to construct two separate processing streams and monitor the production lines accordingly. Farmers must be able to keep GM crops and non-GM crops from mixing during planting, harvesting and shipping. It is almost assured that industry will pass along these additional costs to consumers in the form of higher prices.
Secondly, what are the acceptable limits of GM contamination in non-GM products? The EC has determined that 1% is an acceptable limit of cross-contamination, yet many consumer interest groups argue that only 0% is acceptable. Some companies such as Gerber baby foods42 and Frito-Lay43 have pledged to avoid use of GM foods in any of their products. But who is going to monitor these companies for compliance and what is the penalty if they fail? Once again, the FDA does not have the resources to carry out testing to ensure compliance.
What is the level of detectability of GM food cross-contamination? Scientists agree that current technology is unable to detect minute quantities of contamination, so ensuring 0% contamination using existing methodologies is not guaranteed. Yet researchers disagree on what level of contamination really is detectable, especially in highly processed food products such as vegetable oils or breakfast cereals where the vegetables used to make these products have been pooled from many different sources. A 1% threshold may already be below current levels of detectability.
Finally, who is to be responsible for educating the public about GM food labels and how costly will that education be? Food labels must be designed to clearly convey accurate information about the product in simple language that everyone can understand. This may be the greatest challenge faced be a new food labeling policy: how to educate and inform the public without damaging the public trust and causing alarm or fear of GM food products.
In January 2000, an international trade agreement for labeling GM foods was established44, 45. More than 130 countries, including the US, the world's largest producer of GM foods, signed the agreement. The policy states that exporters must be required to label all GM foods and that importing countries have the right to judge for themselves the potential risks and reject GM foods, if they so choose. This new agreement may spur the U.S. government to resolve the domestic food labeling dilemma more rapidly.

How are GM foods regulated and what is the government's role in this process?

Governments around the world are hard at work to establish a regulatory process to monitor the effects of and approve new varieties of GM plants. Yet depending on the political, social and economic climate within a region or country, different governments are responding in different ways.
In Japan, the Ministry of Health and Welfare has announced that health testing of GM foods will be mandatory as of April 200136, 37. Currently, testing of GM foods is voluntary. Japanese supermarkets are offering both GM foods and unmodified foods, and customers are beginning to show a strong preference for unmodified fruits and vegetables.
India's government has not yet announced a policy on GM foods because no GM crops are grown in India and no products are commercially available in supermarkets yet38. India is, however, very supportive of transgenic plant research. It is highly likely that India will decide that the benefits of GM foods outweigh the risks because Indian agriculture will need to adopt drastic new measures to counteract the country's endemic poverty and feed its exploding population.
Some states in Brazil have banned GM crops entirely, and the Brazilian Institute for the Defense of Consumers, in collaboration with Greenpeace, has filed suit to prevent the importation of GM crops39,. Brazilian farmers, however, have resorted to smuggling GM soybean seeds into the country because they fear economic harm if they are unable to compete in the global marketplace with other grain-exporting countries.
In Europe, anti-GM food protestors have been especially active. In the last few years Europe has experienced two major foods scares: bovine spongiform encephalopathy (mad cow disease) in Great Britain and dioxin-tainted foods originating from Belgium. These food scares have undermined consumer confidence about the European food supply, and citizens are disinclined to trust government information about GM foods. In response to the public outcry, Europe now requires mandatory food labeling of GM foods in stores, and the European Commission (EC) has established a 1% threshold for contamination of unmodified foods with GM food products40.
In the United States, the regulatory process is confused because there are three different government agencies that have jurisdiction over GM foods. To put it very simply, the EPA evaluates GM plants for environmental safety, the USDA evaluates whether the plant is safe to grow, and the FDA evaluates whether the plant is safe to eat. The EPA is responsible for regulating substances such as pesticides or toxins that may cause harm to the environment. GM crops such as B.t. pesticide-laced corn or herbicide-tolerant crops but not foods modified for their nutritional value fall under the purview of the EPA. The USDA is responsible for GM crops that do not fall under the umbrella of the EPA such as drought-tolerant or disease-tolerant crops, crops grown for animal feeds, or whole fruits, vegetables and grains for human consumption. The FDA historically has been concerned with pharmaceuticals, cosmetics and food products and additives, not whole foods. Under current guidelines, a genetically-modified ear of corn sold at a produce stand is not regulated by the FDA because it is a whole food, but a box of cornflakes is regulated because it is a food product. The FDA's stance is that GM foods are substantially equivalent to unmodified, "natural" foods, and therefore not subject to FDA regulation.
The EPA conducts risk assessment studies on pesticides that could potentially cause harm to human health and the environment, and establishes tolerance and residue levels for pesticides. There are strict limits on the amount of pesticides that may be applied to crops during growth and production, as well as the amount that remains in the food after processing. Growers using pesticides must have a license for each pesticide and must follow the directions on the label to accord with the EPA's safety standards. Government inspectors may periodically visit farms and conduct investigations to ensure compliance. Violation of government regulations may result in steep fines, loss of license and even jail sentences.
As an example the EPA regulatory approach, consider B.t. corn. The EPA has not established limits on residue levels in B.t corn because the B.t. in the corn is not sprayed as a chemical pesticide but is a gene that is integrated into the genetic material of the corn itself. Growers must have a license from the EPA for B.t corn, and the EPA has issued a letter for the 2000 growing season requiring farmers to plant 20% unmodified corn, and up to 50% unmodified corn in regions where cotton is also cultivated41. This planting strategy may help prevent insects from developing resistance to the B.t. pesticides as well as provide a refuge for non-target insects such as Monarch butterflies.
The USDA has many internal divisions that share responsibility for assessing GM foods. Among these divisions are APHIS, the Animal Health and Plant Inspection Service, which conducts field tests and issues permits to grow GM crops, the Agricultural Research Service which performs in-house GM food research, and the Cooperative State Research, Education and Extension Service which oversees the USDA risk assessment program. The USDA is concerned with potential hazards of the plant itself. Does it harbor insect pests? Is it a noxious weed? Will it cause harm to indigenous species if it escapes from farmer's fields? The USDA has the power to impose quarantines on problem regions to prevent movement of suspected plants, restrict import or export of suspected plants, and can even destroy plants cultivated in violation of USDA regulations. Many GM plants do not require USDA permits from APHIS. A GM plant does not require a permit if it meets these 6 criteria: 1) the plant is not a noxious weed; 2) the genetic material introduced into the GM plant is stably integrated into the plant's own genome; 3) the function of the introduced gene is known and does not cause plant disease; 4) the GM plant is not toxic to non-target organisms; 5) the introduced gene will not cause the creation of new plant viruses; and 6) the GM plant cannot contain genetic material from animal or human pathogens (see http://www.aphis.usda.gov:80/bbep/bp/7cfr340 ).
The current FDA policy was developed in 1992 (Federal Register Docket No. 92N-0139) and states that agri-biotech companies may voluntarily ask the FDA for a consultation. Companies working to create new GM foods are not required to consult the FDA, nor are they required to follow the FDA's recommendations after the consultation. Consumer interest groups wish this process to be mandatory, so that all GM food products, whole foods or otherwise, must be approved by the FDA before being released for commercialization. The FDA counters that the agency currently does not have the time, money, or resources to carry out exhaustive health and safety studies of every proposed GM food product. Moreover, the FDA policy as it exists today does not allow for this type of intervention.

What are some of the criticisms against GM foods?

Environmental activists, religious organizations, public interest groups, professional associations and other scientists and government officials have all raised concerns about GM foods, and criticized agribusiness for pursuing profit without concern for potential hazards, and the government for failing to exercise adequate regulatory oversight. It seems that everyone has a strong opinion about GM foods. Even the Vatican19 and the Prince of Wales20 have expressed their opinions. Most concerns about GM foods fall into three categories: environmental hazards, human health risks, and economic concerns.
Environmental hazards




  • Unintended harm to other organisms Last year a laboratory study was published in Nature21 showing that pollen from B.t. corn caused high mortality rates in monarch butterfly caterpillars. Monarch caterpillars consume milkweed plants, not corn, but the fear is that if pollen from B.t. corn is blown by the wind onto milkweed plants in neighboring fields, the caterpillars could eat the pollen and perish. Although the Nature study was not conducted under natural field conditions, the results seemed to support this viewpoint. Unfortunately, B.t. toxins kill many species of insect larvae indiscriminately; it is not possible to design a B.t. toxin that would only kill crop-damaging pests and remain harmless to all other insects. This study is being reexamined by the USDA, the U.S. Environmental Protection Agency (EPA) and other non-government research groups, and preliminary data from new studies suggests that the original study may have been flawed22, 23. This topic is the subject of acrimonious debate, and both sides of the argument are defending their data vigorously. Currently, there is no agreement about the results of these studies, and the potential risk of harm to non-target organisms will need to be evaluated further.

  • Reduced effectiveness of pesticides Just as some populations of mosquitoes developed resistance to the now-banned pesticide DDT, many people are concerned that insects will become resistant to B.t. or other crops that have been genetically-modified to produce their own pesticides.

  • Gene transfer to non-target species Another concern is that crop plants engineered for herbicide tolerance and weeds will cross-breed, resulting in the transfer of the herbicide resistance genes from the crops into the weeds. These "superweeds" would then be herbicide tolerant as well. Other introduced genes may cross over into non-modified crops planted next to GM crops. The possibility of interbreeding is shown by the defense of farmers against lawsuits filed by Monsanto. The company has filed patent infringement lawsuits against farmers who may have harvested GM crops. Monsanto claims that the farmers obtained Monsanto-licensed GM seeds from an unknown source and did not pay royalties to Monsanto. The farmers claim that their unmodified crops were cross-pollinated from someone else's GM crops planted a field or two away. More investigation is needed to resolve this issue. There are several possible solutions to the three problems mentioned above. Genes are exchanged between plants via pollen. Two ways to ensure that non-target species will not receive introduced genes from GM plants are to create GM plants that are male sterile (do not produce pollen) or to modify the GM plant so that the pollen does not contain the introduced gene24, 25, 26. Cross-pollination would not occur, and if harmless insects such as monarch caterpillars were to eat pollen from GM plants, the caterpillars would survive.
    Another possible solution is to create buffer zones around fields of GM crops27, 28, 29. For example, non-GM corn would be planted to surround a field of B.t. GM corn, and the non-GM corn would not be harvested. Beneficial or harmless insects would have a refuge in the non-GM corn, and insect pests could be allowed to destroy the non-GM corn and would not develop resistance to B.t. pesticides. Gene transfer to weeds and other crops would not occur because the wind-blown pollen would not travel beyond the buffer zone. Estimates of the necessary width of buffer zones range from 6 meters to 30 meters or more30. This planting method may not be feasible if too much acreage is required for the buffer zones.
    Human health risks

  • Allergenicity Many children in the US and Europe have developed life-threatening allergies to peanuts and other foods. There is a possibility that introducing a gene into a plant may create a new allergen or cause an allergic reaction in susceptible individuals. A proposal to incorporate a gene from Brazil nuts into soybeans was abandoned because of the fear of causing unexpected allergic reactions31. Extensive testing of GM foods may be required to avoid the possibility of harm to consumers with food allergies. Labeling of GM foods and food products will acquire new importance, which I shall discuss later.

  • Unknown effects on human health There is a growing concern that introducing foreign genes into food plants may have an unexpected and negative impact on human health. A recent article published in Lancet examined the effects of GM potatoes on the digestive tract in rats32, 33. This study claimed that there were appreciable differences in the intestines of rats fed GM potatoes and rats fed unmodified potatoes. Yet critics say that this paper, like the monarch butterfly data, is flawed and does not hold up to scientific scrutiny34. Moreover, the gene introduced into the potatoes was a snowdrop flower lectin, a substance known to be toxic to mammals. The scientists who created this variety of potato chose to use the lectin gene simply to test the methodology, and these potatoes were never intended for human or animal consumption. On the whole, with the exception of possible allergenicity, scientists believe that GM foods do not present a risk to human health.
    Economic concerns
    Bringing a GM food to market is a lengthy and costly process, and of course agri-biotech companies wish to ensure a profitable return on their investment. Many new plant genetic engineering technologies and GM plants have been patented, and patent infringement is a big concern of agribusiness. Yet consumer advocates are worried that patenting these new plant varieties will raise the price of seeds so high that small farmers and third world countries will not be able to afford seeds for GM crops, thus widening the gap between the wealthy and the poor. It is hoped that in a humanitarian gesture, more companies and non-profits will follow the lead of the Rockefeller Foundation and offer their products at reduced cost to impoverished nations.
    Patent enforcement may also be difficult, as the contention of the farmers that they involuntarily grew Monsanto-engineered strains when their crops were cross-pollinated shows. One way to combat possible patent infringement is to introduce a "suicide gene" into GM plants. These plants would be viable for only one growing season and would produce sterile seeds that do not germinate. Farmers would need to buy a fresh supply of seeds each year. However, this would be financially disastrous for farmers in third world countries who cannot afford to buy seed each year and traditionally set aside a portion of their harvest to plant in the next growing season. In an open letter to the public, Monsanto has pledged to abandon all research using this suicide gene technology35.

  • How prevalent are GM crops? What plants are involved?

    According to the FDA and the United States Department of Agriculture (USDA), there are over 40 plant varieties that have completed all of the federal requirements for commercialization (http://vm.cfsan.fda.gov/%7Elrd/biocon). Some examples of these plants include tomatoes and cantalopes that have modified ripening characteristics, soybeans and sugarbeets that are resistant to herbicides, and corn and cotton plants with increased resistance to insect pests. Not all these products are available in supermarkets yet; however, the prevalence of GM foods in U.S. grocery stores is more widespread than is commonly thought. While there are very, very few genetically-modified whole fruits and vegetables available on produce stands, highly processed foods, such as vegetable oils or breakfast cereals, most likely contain some tiny percentage of genetically-modified ingredients because the raw ingredients have been pooled into one processing stream from many different sources. Also, the ubiquity of soybean derivatives as food additives in the modern American diet virtually ensures that all U.S. consumers have been exposed to GM food products.
    The U.S. statistics that follow are derived from data presented on the USDA web site at http://www.ers.usda.gov/briefing/biotechnology/. The global statistics are derived from a brief published by the International Service for the Acquisition of Agri-biotech Applications (ISAAA) at http://www.isaaa.org/publications/briefs/Brief_21.htm and from the Biotechnology Industry Organization at http://www.bio.org/food&ag/1999Acreage.
    Thirteen countries grew genetically-engineered crops commercially in 2000, and of these, the U.S. produced the majority. In 2000, 68% of all GM crops were grown by U.S. farmers. In comparison, Argentina, Canada and China produced only 23%, 7% and 1%, respectively. Other countries that grew commercial GM crops in 2000 are Australia, Bulgaria, France, Germany, Mexico, Romania, South Africa, Spain, and Uruguay.
    Soybeans and corn are the top two most widely grown crops (82% of all GM crops harvested in 2000), with cotton, rapeseed (or canola) and potatoes trailing behind. 74% of these GM crops were modified for herbicide tolerance, 19% were modified for insect pest resistance, and 7% were modified for both herbicide tolerance and pest tolerance. Globally, acreage of GM crops has increased 25-fold in just 5 years, from approximately 4.3 million acres in 1996 to 109 million acres in 2000 - almost twice the area of the United Kingdom. Approximately 99 million acres were devoted to GM crops in the U.S. and Argentina alone.
    In the U.S., approximately 54% of all soybeans cultivated in 2000 were genetically-modified, up from 42% in 1998 and only 7% in 1996. In 2000, genetically-modified cotton varieties accounted for 61% of the total cotton crop, up from 42% in 1998, and 15% in 1996. GM corn and also experienced a similar but less dramatic increase. Corn production increased to 25% of all corn grown in 2000, about the same as 1998 (26%), but up from 1.5% in 1996. As anticipated, pesticide and herbicide use on these GM varieties was slashed and, for the most part, yields were increased (for details, see the UDSA publication at http://www.ers.usda.gov/publications/aer786/).

    What are some of the advantages of GM foods?

    The world population has topped 6 billion people and is predicted to double in the next 50 years. Ensuring an adequate food supply for this booming population is going to be a major challenge in the years to come. GM foods promise to meet this need in a number of ways:


  • Pest resistance Crop losses from insect pests can be staggering, resulting in devastating financial loss for farmers and starvation in developing countries. Farmers typically use many tons of chemical pesticides annually. Consumers do not wish to eat food that has been treated with pesticides because of potential health hazards, and run-off of agricultural wastes from excessive use of pesticides and fertilizers can poison the water supply and cause harm to the environment. Growing GM foods such as B.t. corn can help eliminate the application of chemical pesticides and reduce the cost of bringing a crop to market4, 5.

  • Herbicide tolerance For some crops, it is not cost-effective to remove weeds by physical means such as tilling, so farmers will often spray large quantities of different herbicides (weed-killer) to destroy weeds, a time-consuming and expensive process, that requires care so that the herbicide doesn't harm the crop plant or the environment. Crop plants genetically-engineered to be resistant to one very powerful herbicide could help prevent environmental damage by reducing the amount of herbicides needed. For example, Monsanto has created a strain of soybeans genetically modified to be not affected by their herbicide product Roundup ®6. A farmer grows these soybeans which then only require one application of weed-killer instead of multiple applications, reducing production cost and limiting the dangers of agricultural waste run-off7.

  • Disease resistance There are many viruses, fungi and bacteria that cause plant diseases. Plant biologists are working to create plants with genetically-engineered resistance to these diseases8, 9.

  • Cold tolerance Unexpected frost can destroy sensitive seedlings. An antifreeze gene from cold water fish has been introduced into plants such as tobacco and potato. With this antifreeze gene, these plants are able to tolerate cold temperatures that normally would kill unmodified seedlings10. (Note: I have not been able to find any journal articles or patents that involve fish antifreeze proteins in strawberries, although I have seen such reports in newspapers. I can only conclude that nothing on this application has yet been published or patented.)

  • Drought tolerance/salinity tolerance As the world population grows and more land is utilized for housing instead of food production, farmers will need to grow crops in locations previously unsuited for plant cultivation. Creating plants that can withstand long periods of drought or high salt content in soil and groundwater will help people to grow crops in formerly inhospitable places11, 12.

  • Nutrition Malnutrition is common in third world countries where impoverished peoples rely on a single crop such as rice for the main staple of their diet. However, rice does not contain adequate amounts of all necessary nutrients to prevent malnutrition. If rice could be genetically engineered to contain additional vitamins and minerals, nutrient deficiencies could be alleviated. For example, blindness due to vitamin A deficiency is a common problem in third world countries. Researchers at the Swiss Federal Institute of Technology Institute for Plant Sciences have created a strain of "golden" rice containing an unusually high content of beta-carotene (vitamin A)13. Since this rice was funded by the Rockefeller Foundation14, a non-profit organization, the Institute hopes to offer the golden rice seed free to any third world country that requests it. Plans were underway to develop a golden rice that also has increased iron content. However, the grant that funded the creation of these two rice strains was not renewed, perhaps because of the vigorous anti-GM food protesting in Europe, and so this nutritionally-enhanced rice may not come to market at all15.

  • Pharmaceuticals Medicines and vaccines often are costly to produce and sometimes require special storage conditions not readily available in third world countries. Researchers are working to develop edible vaccines in tomatoes and potatoes16, 17. These vaccines will be much easier to ship, store and administer than traditional injectable vaccines.

  • Phytoremediation Not all GM plants are grown as crops. Soil and groundwater pollution continues to be a problem in all parts of the world. Plants such as poplar trees have been genetically engineered to clean up heavy metal pollution from contaminated soil18.

  • What are genetically-modified foods?

    The term GM foods or GMOs (genetically-modified organisms) is most commonly used to refer to crop plants created for human or animal consumption using the latest molecular biology techniques. These plants have been modified in the laboratory to enhance desired traits such as increased resistance to herbicides or improved nutritional content. The enhancement of desired traits has traditionally been undertaken through breeding, but conventional plant breeding methods can be very time consuming and are often not very accurate. Genetic engineering, on the other hand, can create plants with the exact desired trait very rapidly and with great accuracy. For example, plant geneticists can isolate a gene responsible for drought tolerance and insert that gene into a different plant. The new genetically-modified plant will gain drought tolerance as well. Not only can genes be transferred from one plant to another, but genes from non-plant organisms also can be used. The best known example of this is the use of B.t. genes in corn and other crops. B.t., or Bacillus thuringiensis, is a naturally occurring bacterium that produces crystal proteins that are lethal to insect larvae. B.t. crystal protein genes have been transferred into corn, enabling the corn to produce its own pesticides against insects such as the European corn borer. For two informative overviews of some of the techniques involved in creating GM foods, visit Biotech Basics (sponsored by Monsanto)

    Reading Chapters In The Genome

    Every cell in the body stems from just one cell: the fertilized egg.
    Every cell contains the same library of instructions, but the cells read and use different genetic chapters.
    Reading Chapters from the Genome

    Every cell in the body contains all of the DNA sequence, but the composition of each cell depends on which sections of the DNA are used. We know that each cell reads only those chapters from the library of instructions that it needs. The selective reading process creates many different kinds of cells, such as skin, muscle, neural, and bone cells, all of which develop from the many cells of the embryo produced by the growth and division of one cell: the fertilized egg. Studies of the fruit fly, Drosophila melanogaster, have been useful in revealing how organisms develop these cell types, with each cell knowing what chapters to read according to its position in the developing embryo.
    Grassroots Cooperation

    The human body has between 50 and 100 trillion cells and no single cell is in charge. Throughout a lifetime, each cell interacts with many other cells to determine which instructions to use at a particular time and place.

    DNA Is Like A Library Of Instructions

    The genome is like a library of instructions.
    A gene is a sequence of A’s, T’s, G’s, and C’s that usually provides the instructions for a single protein component of an organism.
    The letters of the genetic alphabet – A, T, G, and C – are meaningless on their own, but they are combined into useful instructions in genes. Some genes carry enough information for one complete characteristic of an organism, but most characteristics result from combinations of genes. Genes are like chapters in the books that fill the library of the genome.
    DNA Sequencing

    The sequence of letters within a gene is like the letters in a book of instructions. Deciphering the enormously long sequence of A’s, T’s, G’s, and C’s in an organism’s genome reveals useful information. For example, finding a difference in a gene sequence that governs muscle structure raises questions. Could the difference affect health? Just as changing one letter in a word can change its meaning – for example, mice to rice to nice – so changing one DNA letter can sometimes cause illness.
    Not all of the sequences in the genes of two humans are identical. For example, because your face is unique, the precise set of sequences in the large group of genes that control the shape of your face are presumably unique too. Some special parts of the DNA sequence vary from person to person with unusually high frequency. As you will see, finding sequences in DNA samples can be used to identify individuals and help solve crimes, even when there are no eyewitnesses.

    Reading the Sequences

    The sequence of nucleotides in a gene gives it meaning by storing the instructions for building the other molecules necessary for life. These instructions are read as a string of A’s, T’s, G’s, and C’s, such as ACGGTAACT. In the sense that there are 26 letters in the English alphabet, there are four letters in the alphabet of DNA.
    The four letters in the DNA alphabet are actually abbreviations for the chemicals that make up the library of instructions.
    A for Adenine
    T for Thymine
    G for Guanine
    C for Cytosine

    Unzipping DNA

    The Sequence On One Strand
    The DNA molecule is composed of two very long strands of A’s, T’s, G’s and C’s, which are tightly paired with each other. An A on one strand is always paired with a T on the other strand, and a G is always paired with a C. This means that if the sequence of nucleotides on one strand is known, the sequence of the other strand will be automatically known as well.
    One strand of DNA is like a photographic negative of the other strand. A negative can be used to make many copies of a photograph because it contains all of the information that is part of that photograph. Similarly, to read the sequence of A’s, T’s, G’s, and C’s in a genome, it is only necessary to read one strand of DNA to be able to deduce the sequence of the other strand.
    Graphic of DNA base pairing  One Strand of DNA Is Like a Photographic Negative to the Other
    An adenine (A) on one strand is always paired with a thymine (T) on the other strand, and a guanine (G) is always paired with a cytosine (C). If the sequence of nucleotides on one strand is known, the sequence of the other strand will be automatically known as well.

    The DNA Sequence

    The extremely long DNA molecule is actually made of a long string of chemical building blocks called “nucleotides.” There are four different nucleotides, which are labeled adenine (A), thymine (T), guanine (G), and cytosine (C). The human genome is made of a sequence of roughly three billion of these nucleotides, and it is about the same size as the genome of a chimpanzee or a mouse. In contrast, a fruit fly has 180 million, a yeast has 12 million, and the flowering weed “thale cress” has 100 million nucleotides of DNA in its genome.
    Learn more about how to read the DNA sequence and probe the sequence for matches in the following sections:


     Graphic of DNA Sequence

    Inheritance

    Two Copies of the Genome
    You Inherit One Copy From Each Parent

    A person has two copies of every gene sequence, one inherited from the mother, and the other inherited from the father. A child thus inherits one copy from each parent's own pair, and this copy is selected from the parent randomly. In order to fully understand a person's DNA sequences, both inherited copies of a gene need to be examined.
    These sequences are often not identical. Gene sequences for so-called "dominant" traits are expressed over "recessive" traits. Do you have a cleft chin? It is an indentation at the tip of your chin. If so, you have at least one copy of the dominant gene for cleft chin. But if your chin has no indentation, you have two copies of the recessive gene for this trait.
    Photo of Human Chromosomes Two Copies of Each Chromosome
    You inherit one copy of every chromosome from each parent. Therefore you have two copies of every gene sequence.

    Tracing Similarities And Differences In Our DNA

    What percent of their genes match yours?
    Another human? 100% - All humans have the same genes, but some of these genes contain sequence differences that make each person unique.
    A chimpanzee? 98% - Chimpanzees are the closest living species to humans.
    A mouse? 92% - All mammals are quite similar genetically.
    A fruit fly? 44% - Studies of fruit flies have shown how shared genes govern the growth and structure of both insects and mammals.
    Yeast? 26% - Yeasts are single-celled organisms, but they have many housekeeping genes that are the same as the genes in humans, such as those that enable energy to be derived from the breakdown of sugars.
    A weed (thale cress)? 18% - Plants have many metabolic differences from humans. For example, they use sunlight to convert carbon dioxide gas to sugars. But they also have similarities in their housekeeping genes.
    Why Were Genes Used In This Comparison, and How Do They Relate To DNA?

    Genes are the fundamental units of DNA function. In DNA terms, genes are discrete sections of the DNA sequence that are part of much longer DNA molecules. They provide the biochemical instructions for producing all of the components of biological organisms. Some genes specify visible physical traits, while others govern metabolic processes. Most traits, such as the shape of your face, require the actions of many genes.
    Why Are We So Similar?

    The DNA of these species is so similar because the basic organization of life is widely shared, with the largest differences found between plants and animals, or between tiny single-celled organisms like yeast and large multicellular organisms like ourselves. The similarities reflect a common ancestry that appears to be shared by all life on Earth.
    Are People Really Identical?

    Even though humans share 100% of the same genes, the instructions contained within the genes are not entirely identical. Each person is unique. People have different hair colors, facial structures, and other traits. These differences between individuals result from very small differences in their DNA sequences. DNA also contains many so-called "housekeeping genes" that control important metabolic processes. As you will see, some of the differences in these genes can cause illness.
    Although the DNA of any two people on Earth is, in fact, 99.9% identical, even a tiny difference can have a big effect if this difference is located in a critical gene.

    Where Is DNA Found?

    Throughout the body - in cells...

    Our bodies are formed from between 50 and 100 trillion cells (a trillion is a thousand billion, or a thousand, thousand million). These cells are organized into tissues, such as skin, muscle, and bone. Each cell contains all of the organism's genetic instructions stored as DNA. However, each cell uses only the instructions from part of the DNA. For example, a muscle cell uses the DNA that specifies the muscle apparatus, whereas a nerve cell uses DNA that specifies the nervous system. It is as if each cell reads only that part of a book of instructions that it needs.
    Within the cell - in chromosomes...

    Each very long DNA molecule is tightly wound and packaged as a chromosome. Humans have two sets of 23 chromosomes in every cell, one set inherited from each parent. A human cell therefore contains 46 of these chromosomal DNA molecules.
    Within each chromosome - in genes...

    Each DNA molecule that forms a chromosome can be viewed as a set of shorter DNA sequences. These are the units of DNA function, called genes, each of which guides the production of one particular component of an organism. A set of human chromosomes contains one copy of each of the roughly 30,000 genes in the human "genome" - the term used to refer to the complete genetic instructions for an organism.
    Graphic of cell, chromosomes and DNA DNA is found throughout the body.
    Each cell contains all of the organism's genetic instructions stored as DNA. Each very long DNA molecule is tightly wound and packaged as a chromosome. Each DNA molecule that forms a chromosome can be viewed as a set of shorter DNA sequences. These are the units of DNA function, called genes, each of which guides the production of one particular component of an organism.

    Understanding Gene Testing

    What are genes?


    Genes are working subunits of DNA. DNA is a vast chemical information database that carries the complete set of instructions for making all the proteins a cell will ever need. Each gene contains a particular set of instructions, usually coding for a particular protein.
    DNA exists as two long, paired strands spiraled into the famous double helix. Each strand is made up of millions of chemical building blocks called bases. While there are only four different chemical bases in DNA (adenine, thymine, cytosine, and guanine), the order in which the bases occur determines the information available, much as specific letters of the alphabet combine to form words and sentences.
    DNA resides in the core, or nucleus, of each of the body's trillions of cells. Every human cell (with the exception of mature red blood cells, which have no nucleus) contains the same DNA. Each cell has 46 molecules of double-stranded DNA. Each molecule is made up of 50 to 250 million bases housed in a chromosome.
    The DNA in each chromosome constitutes many genes (as well as vast stretches of noncoding DNA, the function of which is unknown). A gene is any given segment along the DNA that encodes instructions that allow a cell to produce a specific product - typically, a protein such as an enzyme - that initiates one specific action. There are between 50,000 and 100,000 genes, and every gene is made up of thousands, even hundreds of thousands, of chemical bases.
    Human cells contain two sets of chromosomes, one set inherited from the mother and one from the father. (Mature sperm and egg cells carry a single set of chromosomes.) Each set has 23 single chromosomes - 22 autosomes and an X or Y sex chromosome. (Females inherit an X from each parent, while males get an X from the mother and a Y from the father.)
    illustrtion of a cell making protein
    For a cell to make protein, the information from a gene is copied, base by base, from DNA into new strands of messenger RNA (mRNA). Then mRNA travels out of the nucleus into the cytoplasm, to cell organelles called ribosomes. There, mRNA directs the assembly of amino acids that fold into completed protein molecule.



    Each human cell contains 23 pairs of chromosomes, which can be distinguished by size and by unique banding patterns. This set is from a male, since it contains a Y chromosome. Females have two X chromosomes.


    different genes activated in different cells
    Different genes are activated in different cells, creating the specific proteins that give a particular cell type its character.

    Sunday, June 6, 2010

    Ethical, Legal, and Social Concerns about DNA Databanking

    The primary concern is privacy. DNA profiles are different from fingerprints, which are useful only for identification. DNA can provide insights into many intimate aspects of people and their families including susceptibility to particular diseases, legitimacy of birth, and perhaps predispositions to certain behaviors and sexual orientation. This information increases the potential for genetic discrimination by government, insurers, employers, schools, banks, and others.
    Collected samples are stored, and many state laws do not require the destruction of a DNA record or sample after a conviction has been overturned. So there is a chance that a person's entire genome may be available —regardless of whether they were convicted or not. Although the DNA used is considered "junk DNA", single tandem repeated DNA bases (STRs), which are not known to code for proteins, in the future this information may be found to reveal personal information such as susceptibilities to disease and certain behaviors.
    Practicality is a concern for DNA sampling and storage. An enormous backlog of over half a million DNA samples waits to be entered into the CODIS system. The statute of limitations has expired in many cases in which the evidence would have been useful for conviction.
    Who is chosen for sampling also is a concern. In the United Kingdom, for example, all suspects can be forced to provide a DNA sample. Likewise, all arrestees --regardless of the degree of the charge and the possibility that they may not be convicted--can be compelled to comply. This empowers police officers, rather than judges and juries, to provide the state with intimate evidence that could lead to "investigative arrests."
    In the United States each state legislature independently decides whether DNA can be sampled from arrestees or convicts. In 2006, the New Mexico state legislature passed Katie's Bill, a law that requires the police to take DNA samples from suspects in most felony arrests. Previous New Mexico laws required DNA to be sampled only from convicted felons. The bill is named for Katie Sepich, whose 2003 murder went unsolved until her killer's DNA entered the database in 2005 when he was convinced of another felony. Her killer had been arrested, but not convicted, for burglary prior to 2005.

    Opponents of the law assert that it infringes on the privacy and rights of the innocent. While Katie’s Law does allow cleared suspects to petition to have their DNA samples purged from the state database, the purging happens only after the arrest. Civil liberties advocates say that Katie's Bill still raises the question of Fourth Amendment violations against unreasonable search and seizure and stress that the law could be abused to justify arrests made on less than probable cause just to obtain DNA evidence.
    As of September 2007, all 50 states have laws that require convicted sex offenders to submit DNA, 44 states have laws that require convicted felons to submit DNA, 9 states require DNA samples from those convicted of certain misdemeanors, and 11 states—including Alaska, Arizona, California, Kansas, Louisiana, Minnesota, New Mexico, North Dakota, Tennessee, Texas, and Virginia—have laws authorizing arrestee DNA sampling.

    What are some of the DNA technologies used in forensic investigations?

    Restriction Fragment Length Polymorphism (RFLP)
    RFLP is a technique for analyzing the variable lengths of DNA fragments that result from digesting a DNA sample with a special kind of enzyme. This enzyme, a restriction endonuclease, cuts DNA at a specific sequence pattern know as a restriction endonuclease recognition site. The presence or absence of certain recognition sites in a DNA sample generates variable lengths of DNA fragments, which are separated using gel electrophoresis. They are then hybridized with DNA probes that bind to a complementary DNA sequence in the sample.
    RFLP was one of the first applications of DNA analysis to forensic investigation. With the development of newer, more efficient DNA-analysis techniques, RFLP is not used as much as it once was because it requires relatively large amounts of DNA. In addition, samples degraded by environmental factors, such as dirt or mold, do not work well with RFLP.
    PCR Analysis
    Polymerase chain reaction (PCR) is used to make millions of exact copies of DNA from a biological sample. DNA amplification with PCR allows DNA analysis on biological samples as small as a few skin cells. With RFLP, DNA samples would have to be about the size of a quarter. The ability of PCR to amplify such tiny quantities of DNA enables even highly degraded samples to be analyzed. Great care, however, must be taken to prevent contamination with other biological materials during the identifying, collecting, and preserving of a sample.
    STR Analysis
    Short tandem repeat (STR) technology is used to evaluate specific regions (loci) within nuclear DNA. Variability in STR regions can be used to distinguish one DNA profile from another. The Federal Bureau of Investigation (FBI) uses a standard set of 13 specific STR regions for CODIS. CODIS is a software program that operates local, state, and national databases of DNA profiles from convicted offenders, unsolved crime scene evidence, and missing persons. The odds that two individuals will have the same 13-loci DNA profile is about one in a billion.
    Mitochondrial DNA Analysis
    Mitochondrial DNA analysis (mtDNA) can be used to examine the DNA from samples that cannot be analyzed by RFLP or STR. Nuclear DNA must be extracted from samples for use in RFLP, PCR, and STR; however, mtDNA analysis uses DNA extracted from another cellular organelle called a mitochondrion. While older biological samples that lack nucleated cellular material, such as hair, bones, and teeth, cannot be analyzed with STR and RFLP, they can be analyzed with mtDNA. In the investigation of cases that have gone unsolved for many years, mtDNA is extremely valuable.
    All mothers have the same mitochondrial DNA as their offspring. This is because the mitochondria of each new embryo comes from the mother's egg cell. The father's sperm contributes only nuclear DNA. Comparing the mtDNA profile of unidentified remains with the profile of a potential maternal relative can be an important technique in missing-person investigations.
    Y-Chromosome Analysis
    The Y chromosome is passed directly from father to son, so analysis of genetic markers on the Y chromosome is especially useful for tracing relationships among males or for analyzing biological evidence involving multiple male contributors.

    How is DNA typing done?

    Only one-tenth of a single percent of DNA (about 3 million bases) differs from one person to the next. Scientists can use these variable regions to generate a DNA profile of an individual, using samples from blood, bone, hair, and other body tissues and products.
    In criminal cases, this generally involves obtaining samples from crime-scene evidence and a suspect, extracting the DNA, and analyzing it for the presence of a set of specific DNA regions (markers).
    Scientists find the markers in a DNA sample by designing small pieces of DNA (probes) that will each seek out and bind to a complementary DNA sequence in the sample. A series of probes bound to a DNA sample creates a distinctive pattern for an individual. Forensic scientists compare these DNA profiles to determine whether the suspect's sample matches the evidence sample. A marker by itself usually is not unique to an individual; if, however, two DNA samples are alike at four or five regions, odds are great that the samples are from the same person.
    If the sample profiles don't match, the person did not contribute the DNA at the crime scene.
    If the patterns match, the suspect may have contributed the evidence sample. While there is a chance that someone else has the same DNA profile for a particular probe set, the odds are exceedingly slim. The question is, How small do the odds have to be when conviction of the guilty or acquittal of the innocent lies in the balance? Many judges consider this a matter for a jury to take into consideration along with other evidence in the case. Experts point out that using DNA forensic technology is far superior to eyewitness accounts, where the odds for correct identification are about 50:50.
    The more probes used in DNA analysis, the greater the odds for a unique pattern and against a coincidental match, but each additional probe adds greatly to the time and expense of testing. Four to six probes are recommended. Testing with several more probes will become routine, observed John Hicks (Alabama State Department of Forensic Services). He predicted that DNA chip technology (in which thousands of short DNA sequences are embedded in a tiny chip) will enable much more rapid, inexpensive analyses using many more probes and raising the odds against coincidental matches.

    Is DNA effective in identifying persons?

    DNA identification can be quite effective if used intelligently. Portions of the DNA sequence that vary the most among humans must be used; also, portions must be large enough to overcome the fact that human mating is not absolutely random.
    Consider the scenario of a crime scene investigation . . .
    Assume that type O blood is found at the crime scene. Type O occurs in about 45% of Americans. If investigators type only for ABO, finding that the "suspect" in a crime is type O really doesn't reveal very much.
    If, in addition to being type O, the suspect is a blond, and blond hair is found at the crime scene, you now have two bits of evidence to suggest who really did it. However, there are a lot of Type O blonds out there.
    If you find that the crime scene has footprints from a pair of Nike Air Jordans (with a distinctive tread design) and the suspect, in addition to being type O and blond, is also wearing Air Jordans with the same tread design, you are much closer to linking the suspect with the crime scene.
    In this way, by accumulating bits of linking evidence in a chain, where each bit by itself isn't very strong but the set of all of them together is very strong, you can argue that your suspect really is the right person.
    With DNA, the same kind of thinking is used; you can look for matches (based on sequence or on numbers of small repeating units of DNA sequence) at many different locations on the person's genome; one or two (even three) aren't enough to be confident that the suspect is the right one, but thirteen sites are used. A match at all thirteen is rare enough that you (or a prosecutor or a jury) can be very confident ("beyond a reasonable doubt") that the right person is accused.

    How does forensic identification work?

    Any type of organism can be identified by examination of DNA sequences unique to that species. Identifying individuals within a species is less precise at this time, although when DNA sequencing technologies progress farther, direct comparison of very large DNA segments, and possibly even whole genomes, will become feasible and practical and will allow precise individual identification.
    To identify individuals, forensic scientists scan 13 DNA regions, or loci, that vary from person to person and use the data to create a DNA profile of that individual (sometimes called a DNA fingerprint). There is an extremely small chance that another person has the same DNA profile for a particular set of 13 regions.
    Some Examples of DNA Uses for Forensic Identification
    • Identify potential suspects whose DNA may match evidence left at crime scenes
    • Exonerate persons wrongly accused of crimes
    • Identify crime and catastrophe victims
    • Establish paternity and other family relationships
    • Identify endangered and protected species as an aid to wildlife officials (could be used for prosecuting poachers)
    • Detect bacteria and other organisms that may pollute air, water, soil, and food
    • Match organ donors with recipients in transplant programs
    • Determine pedigree for seed or livestock breeds
    • Authenticate consumables such as caviar and wine

    Exceptions to Mendel's Laws

    There are many examples of inheritance that appear to be exceptions to Mendel's laws. Usually, they turn out to represent complex interactions among various allelic conditions. For example, co-dominant alleles both contribute to a phenotype. Neither is dominant over the other. Control of the human blood group system provides a good example of co-dominant alleles.
     
     
    The Four Basic Blood Types
    There are four basic blood types, and they are O, A, B, and AB. We know that our blood type is determined by the "alleles" that we inherit from our parents. For the blood type gene, there are three basic blood type alleles: A, B, and O. We all have two alleles, one inherited from each parent. The possible combinations of the three alleles are OO, AO, BO, AB, AA, and BB. Blood types A and B are "co-dominant" alleles, whereas O is "recessive". A codominant allele is apparent even if only one is present; a recessive allele is apparent only if two recessive alleles are present. Because blood type O is recessive, it is not apparent if the person inherits an A or B allele along with it. So, the possible allele combinations result in a particular blood type in this way:
    OO = blood type O
    AO = blood type A
    BO = blood type B
    AB = blood type AB
    AA = blood type A
    BB = blood type B
    You can see that a person with blood type B may have a B and an O allele, or they may have two B alleles. If both parents are blood type B and both have a B and a recessive O, then their children will either be BB, BO, or OO. If the child is BB or BO, they have blood type B. If the child is OO, he or she will have blood type O.
     
     
    Pleiotropism, or pleotrophy, refers to the phenomenon in which a single gene is responsible for producing multiple, distinct, and apparently unrelated phenotypic traits, that is, an individual can exhibit many different phenotypic outcomes. This is because the gene product is active in many places in the body. An example is Marfan's syndrome, where there is a defect in the gene coding for a connective tissue protein. Individuals with Marfan's syndrome exhibit abnormalities in their eyes, skeletal system, and cardiovascular system.
    Some genes mask the expression of other genes just as a fully dominant allele masks the expression of its recessive counterpart. A gene that masks the phenotypic effect of another gene is called an epistatic gene; the gene it subordinates is the hypostatic gene. The gene for albinism in humans is an epistatic gene. It is not part of the interacting skin-color genes. Rather, its dominant allele is necessary for the development of any skin pigment, and its recessive homozygous state results in the albino condition, regardless of how many other pigment genes may be present. Because of the effects of an epistatic gene, some individuals who inherit the dominant, disease-causing gene show only partial symptoms of the disease. Some, in fact, may show no expression of the disease-causing gene, a condition referred to as nonpenetrance. The individual in whom such a nonpenetrant mutant gene exists will be phenotypically normal but still capable of passing the deleterious gene on to offspring, who may exhibit the full-blown disease.
    Then we have traits that are multigenic, that is, they result from the expression of several different genes. This is true for human eye color, in which at least three different genes are responsible for determining eye color. A brown/blue gene and a central brown gene are both found on chromosome 15, whereas a green/blue gene is found on chromosome 19. The interaction between these genes is not well understood. It is speculated that there may be other genes that control other factors, such as the amount of pigment deposited in the iris. This multigenic system explains why two blue-eyed individuals can have a brown-eyed child.
    Speaking of eye color, have you ever seen someone with one green eye and one brown eye? In this case, somatic mosaicism may be the culprit. This is probably easier to describe than explain. In multicellular organisms, every cell in the adult is ultimately derived from the single-cell fertilized egg. Therefore, every cell in the adult normally carries the same genetic information. However, what would happen if a mutation occurred in only one cell at the two-cell stage of development? Then the adult would be composed of two types of cells: cells with the mutation and cells without. If a mutation affecting melanin production occurred in one of the cells in the cell lineage of one eye but not the other, then the eyes would have different genetic potential for melanin synthesis. This could produce eyes of two different colors.
    Penetrance refers to the degree to which a particular allele is expressed in a population phenotype. If every individual carrying a dominant mutant gene demonstrates the mutant phenotype, the gene is said to show complete penetrance.
     

    How Does Inheritance Work?

    Our discussion here is restricted to sexually reproducing organisms where each gene in an individual is represented by two copies, called alleles—one on each chromosome pair. There may be more than two alleles, or variants, for a given gene in a population, but only two alleles can be found in an individual. Therefore, the probability that a particular allele will be inherited is 50:50, that is, alleles randomly and independently segregate into daughter cells, although there are some exceptions to this rule.
    The term diploid describes a state in which a cell has two sets of homologous chromosomes, or two chromosomes that are the same. The maturation of germ line stem cells into gametes requires the diploid number of each chromosome be reduced by half. Hence, gametes are said to be haploid—having only a single set of homologous chromosomes. This reduction is accomplished through a process called meiosis, where one chromosome in a diploid pair is sent to each daughter gamete. Human gametes, therefore, contain 23 chromosomes, half the number of somatic cells—all the other cells of the body.
    Because the chromosome in one pair separates independently of all other chromosomes, each new gamete has the potential for a totally new combination of chromosomes. In humans, the independent segregation of the 23 chromosomes can lead to as many as 16 to 17 million different combinations in one individual's gametes. Only one of these gametes will combine with one of the nearly 17 million possible combinations from the other parent, generating a staggering potential for individual variation. Yet, this is just the beginning. Even more variation is possible when you consider the recombination between sections of chromosomes during meiosis as well as the random mutation that can occur during DNA replication. With such a range of possibilities, it is amazing that siblings look so much alike!
     
     

    Expression of Inherited Genes

    Gene expression, as reflected in an organism's phenotype, is based on conditions specific for each copy of a gene. As we just discussed, for every human gene there are two copies, and for every gene there can be several variants or alleles. If both alleles are the same, the gene is said to be homozygous. If the alleles are different, they are said to be heterozygous. For some alleles, their influence on phenotype takes precedence over all other alleles. For others, expression depends on whether the gene appears in the homozygous or heterozygous state. Still other phenotypic traits are a combination of several alleles from several different genes. Determining the allelic condition used to be accomplished solely through the analysis of pedigrees, much the way Mendel carried out his experiments on peas. However, this method can leave many questions unanswered, particularly for traits that are a result of the interaction between several different genes. Today, molecular genetic techniques exist that can assist researchers in tracking the transmission of traits by pinpointing the location of individual genes, identifying allelic variants, and identifying those traits that are caused by multiple genes.
     
    The Nature of Alleles
    A dominant allele is an allele that is almost always expressed, even if only one copy is present. Dominant alleles express their phenotype even when paired with a different allele, that is, when heterozygous. In this case, the phenotype appears the same in both the heterozygous and homozygous states. Just how the dominant allele overshadows the other allele depends on the gene, but in some cases the dominant gene produces a gene product that the other allele does not. Well-known dominant alleles occur in the human genes for Huntington disease, a form of dwarfism called achondroplasia, and polydactylism (extra fingers and toes).
    On the other hand, a recessive allele will be expressed only if there are two identical copies of that allele, or for a male, if one copy is present on the X chromosome. The phenotype of a recessive allele is only seen when both alleles are the same. When an individual has one dominant allele and one recessive allele, the trait is not expressed because it is overshadowed by the dominant allele. The individual is said to be a carrier for that trait. Examples of recessive disorders in humans include sickle cell anemia, Tay-Sachs disease, and phenylketonuria (PKU).
    A particularly important category of genetic linkage has to do with the X and Y sex chromosomes. These chromosomes not only carry the genes that determine male and female traits, but also those for some other characteristics as well. Genes that are carried by either sex chromosome are said to be sex linked. Men normally have an X and a Y combination of sex chromosomes, whereas women have two X's. Because only men inherit Y chromosomes, they are the only ones to inherit Y-linked traits. Both men and women can have X-linked traits because both inherit X chromosomes.
    X-linked traits not related to feminine body characteristics are primarily expressed in the phenotype of men. This is because men have only one X chromosome. Subsequently, genes on that chromosome that do not code for gender are expressed in the male phenotype, even if they are recessive. In women, a recessive allele on one X chromosome is often masked in their phenotype by a dominant normal allele on the other. This explains why women are frequently carriers of X-linked traits but more rarely have them expressed in their own phenotypes. In humans, at least 320 genes are X-linked. These include the genes for hemophilia, red–green color blindness, and congenital night blindness. There are at least a dozen Y-linked genes, in addition to those that code for masculine physical traits.
    It is now known that one of the X chromosomes in the cells of human females is completely, or mostly, inactivated early in embryonic life. This is a normal self-preservation action to prevent a potentially harmful double dose of genes. Recent research points to the "Xist" gene on the X chromosome as being responsible for a sequence of events that silences one of the X chromosomes in women. The inactivated X chromosomes become highly compacted structures known as Barr bodies. The presence of Barr bodies has been used at international sport competitions as a test to determine whether an athlete is a male or a female.
     
     

    Mutations and the Next Generation

    There are two places where mutations can be introduced and carried into the next generation. In the first stages of development, a sperm cell and egg cell fuse. They then begin to divide, giving rise to cells that differentiate into tissue-specific cell types. One early type of differentiated cell is the germ line cell, which may ultimately develop into mature gametes. If a mutation occurs in the developing germ line cell, it may persist until that individual reaches reproductive age. Now the mutation has the potential to be passed on to the next generation.
    Mutations may also be introduced during meiosis, the mode of cell replication for the formation of sperm and egg cells. In this case, the germ line cell is healthy, and the mutation is introduced during the actual process of gamete replication. Once again, the sperm or egg will contain the mutation, and during the reproductive process, this mutation may then be passed on to the offspring.
    One should bear in mind that not all mutations are bad. Mutations also provide a species with the opportunity to adapt to new environments, as well as to protect a species from new pathogens. Mutations are what lie behind the popular saying of "survival of the fittest", the basic theory of evolution proposed by Charles Darwin in 1859. This theory proposes that as new environments arise, individuals carrying certain mutations that enable an evolutionary advantage will survive to pass this mutation on to its offspring. It does not suggest that a mutation is derived from the environment, but that survival in that environment is enhanced by a particular mutation. Some genes, and even some organisms, have evolved to tolerate mutations better than others. For example, some viral genes are known to have high mutation rates. Mutations serve the virus well by enabling adaptive traits, such as changes in the outer protein coat so that it can escape detection and thereby destruction by the host's immune system. Viruses also produce certain enzymes that are necessary for infection of a host cell. A mutation within such an enzyme may result in a new form that still allows the virus to infect its host but that is no longer blocked by an anti-viral drug. This will allow the virus to propagate freely in its environment.
     
     

    Mendel's Laws—How We Inherit Our Genes

    In 1866, Gregor Mendel studied the transmission of seven different pea traits by carefully test-crossing many distinct varieties of peas. Studying garden peas might seem trivial to those of us who live in a modern world of cloned sheep and gene transfer, but Mendel's simple approach led to fundamental insights into genetic inheritance, known today as Mendel's Laws. Mendel did not actually know or understand the cellular mechanisms that produced the results he observed. Nonetheless, he correctly surmised the behavior of traits and the mathematical predictions of their transmission, the independent segregation of alleles during gamete production, and the independent assortment of genes. Perhaps as amazing as Mendel's discoveries was the fact that his work was largely ignored by the scientific community for over 30 years!
     
    Mendel's Principles of Genetic Inheritance
    Law of Segregation: Each of the two inherited factors (alleles) possessed by the parent will segregate and pass into separate gametes (eggs or sperm) during meiosis, which will each carry only one of the factors.
    Law of Independent Assortment: In the gametes, alleles of one gene separate independently of those of another gene, and thus all possible combinations of alleles are equally probable.
    Law of Dominance: Each trait is determined by two factors (alleles), inherited one from each parent. These factors each exhibit a characteristic dominant, co-dominant, or recessive expression, and those that are dominant will mask the expression of those that are recessive.
     
     

    Mechanisms of Genetic Variation and Heredity

    Does Everyone Have the Same Genes?

    When you look at the human species, you see evidence of a process called genetic variation, that is, there are immediately recognizable differences in human traits, such as hair and eye color, skin pigment, and height. Then there are the not so obvious genetic variations, such as blood type. These expressed, or phenotypic, traits are attributable to genotypic variation in a person's DNA sequence. When two individuals display different phenotypes of the same trait, they are said to have two different alleles for the same gene. This means that the gene's sequence is slightly different in the two individuals, and the gene is said to be polymorphic, "poly" meaning many and "morph" meaning shape or form. Therefore, although people generally have the same genes, the genes do not have exactly the same DNA sequence. These polymorphic sites influence gene expression and also serve as markers for genomic research efforts.
     
     

    Genetic Variation

    The cell cycle is the process that a cell undergoes to replicate.
    Most genetic variation occurs during the phases of the cell cycle when DNA is duplicated. Mutations in the new DNA strand can manifest as base substitutions, such as when a single base gets replaced with another; deletions, where one or more bases are left out; or insertions, where one or more bases are added. Mutations can either be synonymous, in which the variation still results in a codon for the same amino acid or non-synonymous, in which the variation results in a codon for a different amino acid. Mutations can also cause a frame shift, which occurs when the variation bumps the reference point for reading the genetic code down a base or two and results in loss of part, or sometimes all, of that gene product. DNA mutations can also be introduced by toxic chemicals and, particularly in skin cells, exposure to ultraviolet radiation.
     
    The manner in which a cell replicates differs with the various classes of life forms, as well as with the end purpose of the cell replication. Cells that compose tissues in multicellular organisms typically replicate by organized duplication and spatial separation of their cellular genetic material, a process called mitosis. Meiosis is the mode of cell replication for the formation of sperm and egg cells in plants, animals, and many other multicellular life forms. Meiosis differs significantly from mitosis in that the cellular progeny have their complement of genetic material reduced to half that of the parent cell.
     
     
    Mutations that occur in somatic cells—any cell in the body except gametes and their precursors—will not be passed on to the next generation. This does not mean, however, that somatic cell mutations, sometimes called acquired mutations, are benign. For example, as your skin cells prepare to divide and produce new skin cells, errors may be inadvertently introduced when the DNA is duplicated, resulting in a daughter cell that contains the error. Although most defective cells die quickly, some can persist and may even become cancerous if the mutation affects the ability to regulate cell growth.
     
     

    The Influence of DNA Structure and Binding Domains

    Sequences that are important in regulating transcription do not necessarily code for transcription factors or other proteins. Transcription can also be regulated by subtle variations in DNA structure and by chemical changes in the bases to which transcription factors bind. As stated previously, the chemical properties of the four DNA bases differ slightly, providing each base with unique opportunities to chemically react with other molecules. One chemical modification of DNA, called methylation, involves the addition of a methyl group (-CH3). Methylation frequently occurs at cytosine residues that are preceded by guanine bases, oftentimes in the vicinity of promoter sequences. The methylation status of DNA often correlates with its functional activity, where inactive genes tend to be more heavily methylated. This is because the methyl group serves to inhibit transcription by attracting a protein that binds specifically to methylated DNA, thereby interfering with polymerase binding. Methylation also plays an important role in genomic imprinting, which occurs when both maternal and paternal alleles are present but only one allele is expressed while the other remains inactive. Another way to think of genomic imprinting is as "parent of origin differences" in the expression of inherited traits. Considerable intrigue surrounds the effects of DNA methylation, and many researchers are working to unlock the mystery behind this concep

    Controlling Transcription

    Promoters and Regulatory Sequences

    Transcription is the process whereby RNA is made from DNA. It is initiated when an enzyme, RNA polymerase, binds to a site on the DNA called a promoter sequence. In most cases, the polymerase is aided by a group of proteins called "transcription factors" that perform specialized functions, such as DNA sequence recognition and regulation of the polymerase's enzyme activity. Other regulatory sequences include activators, repressors, and enhancers. These sequences can be cis-acting (affecting genes that are adjacent to the sequence) or trans-acting (affecting expression of the gene from a distant site), even on another chromosome.
     
    The Globin Genes: An Example of Transcriptional Regulation
    An example of transcriptional control occurs in the family of genes responsible for the production of globin. Globin is the protein that complexes with the iron-containing heme molecule to make hemoglobin. Hemoglobin transports oxygen to our tissues via red blood cells. In the adult, red blood cells do not contain DNA for making new globin; they are ready-made with all of the hemoglobin they will need.
    During the first few weeks of life, embryonic globin is expressed in the yolk sac of the egg. By week five of gestation, globin is expressed in early liver cells. By birth, red blood cells are being produced, and globin is expressed in the bone marrow. Yet, the globin found in the yolk is not produced from the same gene as is the globin found in the liver or bone marrow stem cells. In fact, at each stage of development, different globin genes are turned on and off through a process of transcriptional regulation called "switching".
    To further complicate matters, globin is made from two different protein chains: an alpha-like chain coded for on chromosome 16; and a beta-like chain coded for on chromosome 11. Each chromosome has the embryonic, fetal, and adult form lined up on the chromosome in a sequential order for developmental expression. The developmentally regulated transcription of globin is controlled by a number of cis-acting DNA sequences, and although there remains a lot to be learned about the interaction of these sequences, one known control sequence is an enhancer called the Locus Control Region (LCR). The LCR sits far upstream on the sequence and controls the alpha genes on chromosome 16. It may also interact with other factors to determine which alpha gene is turned on.
    Thalassemias are a group of diseases characterized by the absence or decreased production of normal globin, and thus hemoglobin, leading to decreased oxygen in the system. There are alpha and beta thalassemias, defined by the defective gene, and there are variations of each of these, depending on whether the embryonic, fetal, or adult forms are affected and/or expressed. Although there is no known cure for the thalassemias, there are medical treatments that have been developed based on our current understanding of both gene regulation and cell differentiation. Treatments include blood transfusions, iron chelators, and bone marrow transplants. With continuing research in the areas of gene regulation and cell differentiation, new and more effective treatments may soon be on the horizon, such as the advent of gene transfer therapies.